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A bit of self-introduction



My laboratory

 Non-destructive evaluation unit (FERZIZEE 18] Unit)

* Near-infrared spectroscopy (NIRS), fluorescence
fingerprint (aka excitation-emission matrix),
spectral imaging, chemometrics...

* One of the most important laboratory for NIRS in
Japan



“Father of NIRS”
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My research starting from imaging...
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And chemomtrcis/ machine learning

Flow cytometer LC/MS/MS
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Variable selection
- why, how and problem -



Prediction model in spectroscopy
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What is variable selection (VS) ?
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Purposes of VS

* Improvement of the model prediction
 Removal of irrelevant, noisy or unreliable variables

* Better model interpretation
* Focusing on variables contribute largely to the model

* Lower measurement costs
* Shorter measurement time
e Simpler, cheaper instruments

(Andersen, C. M., & Bro, R. (2010). Variable selection in regression—a tutorial. Journal of Chemometrics, 24(11-12), 728-737.)



VS methods for partial least
square (PLS) model

* Variable importance in projection (VIP)
* Selectivity ratio (SR)

* Interval PLS (iPLS)

* Genetic algorithms (GA)
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2nd derivative absorbance
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2nd derivative absorbance
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2nd derivative absorbance
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Problem: hyperparameters

* VIP and SR
e Threshold (VIP=1 in many cases, but why? As for SR?)

* IPLS

* Interval size (width in nm)
e Number of interval to be used in the model

* GA
 Genome size (width in nm)
 Number of population (models)
 Number of generations

-

* Arbitrary and unstable results
* Trial and errors



New VS algorithm 1

- stepwise selectivity ratio -



Objective

* VS with NO hyperparameter
* No trial and errors
* Always same result

e Candidate algorithm for modification
* VIP or SR

* They have only one hyperparameter (threshold)
* SR has been reported” to yield less false positives

*Rajalahti, T. et al. (2009). Analytical Chemistry, 81(7), 2581-2590./ Farrés, M. et al. (2015). Journal of Chemometrics, 29(10), 528-536.



Selectivity Ratio (SR)

* Proposed by Rajalahti et al.” for biomarker
discovery from mass spectra data

* “The ratio between explained and residual variance
of the spectral variables on the target-projected
component”

* The higher the SR value, the more important
variable

SR. = v 1 =1,2,3, ..

expl, / vres,z’

*Rajalahti, T., et al. (2009). Chemometrics and Intelligent Laboratory Systems, 95(1), 35-48.



Selection criteria w/o threshold

* Highest or lowest SR value as a criterion
* Only one variable chosen with the highest SR value
* One variable excluded with the lowest SR value

* What if we repeat the variable excluding
procedure?



Stepwise SR: procedure
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N varlables

Delete one varlable with the lowest SR
PLS analysis

Error calculation with cross-validation

l

Choose the number of variables with the lowest error

Repeat




A case study: apple fluorescence
fingerprint

e 1-methylcyclopropene (1-MCP)
* Inhibitor of ethylene perception
* Freshness preserving agent for fruits including apple

* Need for 1-MCP treatment discrimination
* Cannot see the difference by naked eye
* 1-MCP not approved in some apple importing countries
* Individual fruit suitable for long storage or not

* Conventional analysis method
 GC-FID
* Destructive, time-consuming and laborious



Fluorescence Fingerprint (FF)

= Excitation Emission Matrix (EEM)

Set of fluorescence spectra at consecutive wavelengths (WL)

Excitation light

Sample

&

Emission WL

Excitation WL

Emitted
fluorescence

— slight differences in fluorescence characteristics is detectable
— non-destructive observation is possible

1-MCP treatment classification?

Trivittayasil, V., et al. (2018). Chemometrics and Intelligent Laboratory Systems, 175, 30-36.



Methods

442 Fruits

Fuji and Orin cultivars
Control and 1-MCP

2 measurement points
on the equator

Dark room
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FP8500 fluorescence spectrophotometer (JASCO)
EFA-833 epi-fluorescence unit (JASCO)



Sample FF

Control

»

300 400 500 600 200 300 400 500 600
Excitation wavelength [nm] Excitation wavelength [nm]

Wavelength conditions
e Excitation: 200-650 nm, 10 nm intervals
e Emission: 230-750 nm, 10 nm intervals
* Total 2438 wavelengths
No clear difference between control and 1-MCP



Stepwise SR result
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* Several points with lower CV error than the original model
* Choices according to requirements (# variables etc.)



Selected wavelength conditions

Number of variables: 43

200 300 400 500 600
Excitation wavelength [nm]

* Number of variables: 2438->43
* Classification error on independent test set:
12.5%->10.1%



Other cases #1: gasoline NIR

045
?nd Derivative (20 nm) 0.02 ¢
2nd Derivative (40 nm)
0.4 SNV+2nd Derivative (20 nm) 1
‘ ——— SNV+2nd Derivative (40 nm) 0.01}+
3
= 0+t Octane
o 89.6
o
@ -0.01¢F
D
< I 86.5
0.02} 83.4
-0.03 ¢
1000 1200 1400 1600
Number of variables Wavelength [nm]

* Number of variables: 401->74
* Root mean squared error of cross-validation (RMSECV):

0.264->0.207



Other cases #2: cancer proteomics
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Stepwise SR: summary

* No hyperparameter and no trial and error required

* Can be applied to spectral as well as discrete data
such as —omics data

e Effective for the improvement of the model
prediction power

 Model interpretation can be easier with smaller
number of variables

* Remaining problem — dozens of variables are still
too many for simple instruments such as band-pass
filter based spectrometers



New VS algorithm 2

- band-pass filter optimization -



Model with all wavelengths
(PLS etc.)
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Model with few wavelengths
(MLR etc.)
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The best of both worlds?
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Step 1: Calculation of light

intensity through band-pass filters
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Step 1: Calculation of light

intensity through band-pass filters
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Step 1: Calculation of light
intensity through band-pass filters
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Step 2: Model construction

e Multiple linear regression (MLR) or linear
discriminant analysis (LDA) model
* Predicted value=a,+a; x p;+ a; X p;...
* Choose few variables from new variables
(=windows) effective for regression/ classification

* Brute-force search
* 2 windows->,4.,C,=12,248,775 combinations
* 3 windows->,4:,C;=21° combinations...



A solution: stepwise variable
selection

* Create a MLR/ LDA model with one variable

* Add other variables one by one until certain criteria
is satisfied

* Criteria: F-Statistic, p-value, Akaike's Information
Criterion...

* Repeat the procedure with different initial variable
to cover the all possible combinations

* e.g.4950 new variables -> 4950 initial variables, 4950
different models

e Record A, FWHM and prediction accuracy of each
model



Step 3: Optimization of BPF

e Decide how many windows to be used in the
application

* Choose the model with the highest prediction
accuracy with the desired number of windows

* Trade-off between the cost and accuracy
* Number of windows = number of BPFs
* More BPFs -> higher accuracy, higher cost
* Less BPFs -> lower accuracy, lower cost



A gasoline NIR spectra case
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A gasoline NIR spectra case:

orediction results

PLSR with all wavelengths
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A gasoline NIR spectra case:
position of BPFs

BPF,: coefficient (-) + BPF,: coefficient (+)
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 Two BPFs overlapping each other
» Difference between these outputs used
e Similar to derivatives in NIRS?



Extension to FF imaging

EEM-derived fluorescent
imaging device
Sy Camera
Excitation g (

filter

Visualization

result
. e, \ Emission
[Nluminant Illuminatiors filter
probe

Sample: pork meat (0-72 h storage@15°C)
Objective: viable bacteria (colony forming unit: CFU)

Nishino, K. et al. (2013). Optics express, 21(10), 12579-12591.



Window search on FF
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Optimization results
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e Squared error of prediction (SEP)

* PLSR with whole wavelength range: 0.957
* MLR with two BPFs: 0.805



Customized BPFs based on
optimization
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Visualization with customized BPFs
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BPF optimization: summary

* Three steps
 creation of new variables
* model development
* selection of optimal variables

* Can be applied to 2D (NIR etc.) and 3D (FF etc.)
spectral data

* Can be better than PLSR using whole wavelength
range

* Customized BPFs can be developed for imaging



To take home...



Two new VS algorithms

* Stepwise SR

* No hyperparmeters. You can run it once and will get the
same results every time.

* Good for model accuracy and interpretability
improvement.

* Maybe not enough for BPF based instrument design.

* BPF optimization
* A bit complicated with 3 steps and high computational
load.

* We can get better accuracy than normal PLSR with only
2-3 BPFs.

* Imaging hardware can be realized based on the
optimization results.



Thank you for your kind
attention!




