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® Trends and Challenges in Agriculture
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Precision/ Smart/ Digital Agriculture

Analyze the return data from the
transport layer and provide a reaction

Transport Layer

Transmit ta fro i

Get the biological and environmental
data, similar to how humans perceive
it, such as temperature, pests and
diseases, etc.
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® Applications of Machine Vision in Agriculture
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® Applications of Spectroscopic Techs in Agriculture

* Identifying Yellow and Spoiled Flesh
A m 4 in Taiwan Tilapia using NIR

Spectroscopic Techs |
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® Applications of Spectroscopic Techs in Agriculture

To Market Origin Discrimination of Tea /

Spectroscopic Techs | Pesticide Residue Detection of Herbs
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Production Stage

Plant Disease Identification System +
Smart Prescription System 1
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Production Stage

Plant Disease Identification System +
Smart Prescription System
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Production Stage

Plant Disease Identification System +
Smart Prescription System

Virtual Crop Doctor Pests and Diseases (P&D)
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Production Stage

Plant Disease Identification System +
Smart Prescription System
You Only Look Once (YOLO) series: YOLOv9
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Production Stage

Plant Disease Identification System +
® Smart Prescription System

Collect photos »
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angles and 1520
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Production Stage

Plant Disease Identification System +
® Smart Prescription System
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Display the Result:
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Production Stage

® Smart Prescription System
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Plant Disease Identification System +

V¥ Precision medication — lower the cost, reduce environmental impact,
and increase product safety
Expert recommendation (other than medicine)
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(Following Good Agricultural Practices, ‘ GAP’) (Using Natural Enemies as Operations)

Production Stage

® Smart Prescription System

Plant Disease Identification System +

V¥ Current status of system promotion

Tea Farmers and Plant Doctors from different regions participate in
system validation and provide feedback periodically (biweekly/monthly).
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Harvest Stage

Intelligent Monitoring System
® for Greenhouse Asparagus Production

Temperate zone

Subtropical zone

Tl

Region: mostly in US, Region: Taiwan, China, Japan, etc.
Germany, Australia, etc. Method (‘Mother Stalk Cultivation’): keep proper

Method: remove all amount of stalks to increase photosynthesis and help the
stalks and leave spears growth of spears. ‘
only.

— More work for field maintenance.

- Faswr for field —> Require extra labor to scout the field Auto-
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Harvest Stage

Intelligent Monitoring System
for Greenhouse Asparagus Production

V¥ Self-Guiding Field Robot for growth status monitoring
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Front view: Front-view images
Webcam were used to set self-

1 guiding strategies.
1

Side view:
PiCamrea v2 - ——_. CPU: Raspberry P14
ok : Model B
Lidar Edge computing:
(distance Jetson AGX Xavier
measuring)

Side-view images were collected and analyzed to monitor
the growth status of spears and stalks. (e.g., number and length)




Harvest Stage

Intelligent Monitoring System
for Greenhouse Asparagus Production

V¥ Self-Guiding Field Robot for growth status monitoring

Front-view images

were used to set self-

guiding strategies.

Side-view images
were collected and
analyzed to monitor
the growth status of
spears and stalks. (e.g.,

number and length)
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Harvest Stage

Intelligent Monitoring System
for Greenhouse Asparagus Production
Mask RCNN (Heetal., 2017)
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Mask DINO (tietal, 2023)
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Model Backbone Apﬁﬁf’é AP_%‘;%. AP: Average
Precision
Mask RCNN | ResNext-101 61.7 729
MaskDINO | ResNet-50 955 1 852 1




Harvest Stage

Intelligent Monitoring System

o for Greenhouse Asparagus Production
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Colors: different level of density number
(stalks or spears)

Record page:

The images collected by the vehicle are
saved on the cloud server.

Field manager can check out the field
condition remotely.

Monitor page:

Provide model identification results
(e.g., category, quantity, and
dimensions).

Stats page:

Provide overall stalk/spear estimation.

Harvest Stage

Intelligent Monitoring System

o for Greenhouse Asparagus Production

V Integration System for Smart Pesticide Spraying Robot

# of stalks in one meter Density
<15 Sparse
15~25 Medium

> 25 Dense

| * Develop the smart pesticide/fertilizer
robot with with Droxo Tech. (in Taiwan).

¢ Integrate the identification results
(convert to density level) and location
information (UWB coordinates) to
achieve variable fertilization.




Harvest Stage

Intelligent Monitoring System : o
. d 3 . REST
for Greenhouse Asparagus Production EEm W G

¥ Deminstration Video
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® Applications of Spectroscopic Techs in Agriculture
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[ Spectroscopic Techs Origin Discrimination of Tea /
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Postharvest Quality Evaluation

Flavor Prediction for Specialty Coffee

¥ Apply near-infrared spectroscopy (NIR) and machine/deep learning
techniques to predict potential flavor categories in specialty coffee.

Certified Cupper Chemical analysis
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N & /"
& :E;\ 4
N ‘ll' g. 1 J-
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A = \ A\“!
Few well-trained Time-consuming
personnel
Model structure
«| NIR spectrum 'S - ]
3 ~
P q 2 3 + BatchNorm1d
rocessing 2 \ﬂ‘\f
metho : \ ¥ = ReLU
F ) _ i Wavelength(nm) 2500 Convld
Flavor BatchNorm1d
category Flavor
Prediction

(World Coffee Research, 2017)

Postharvest Quality Evaluation

Flavor Prediction for Specialty Coffee
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Postharvest Quality Evaluation
° Flavor Prediction for Specialty Coffee
V¥ Model Prediction V¥ Find the potential correlation between
flavor categories and the corresponding
0y . tas . P
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Postharvest Quality Evaluation

Flavor Prediction for Specialty Coffee

WV Prediction Interface

Ethiopia, Gesha village, Gesha, Nature, Agtron=83.8

e
[ 4 Now using RF modal.
s

Model
selection

Rancom forewt

Tested sample
record

NIR spectrum
display

\

Predicted flavor will be c

Model Floral Fruity S./F. Veg. Roasted Spices N./C. Sweet Other
Ens. SVM Yes Yes No Yes No No Yes Yes No
Ens. RF No Yes No Yes Yes No Yes Yes No
ResNet101 Yes Yes No Yes Yes No Yes Yes No
Ground truth | Yes Yes No Yes Yes No Yes Yes No




Postharvest Quality Evaluation

Flavor Prediction for Specialty Coffee

V Developing a more versatile model to fulfill the
market demand

& Nice Cofiee Appr3

Prediction models for: | /= 4 @

Predicted Flavor Category Argument Selection
Floral Sour Burnt o
Tea like Alcohol Cereal Model  Origin Process Agtron
SR Fermented Spices NIR-Prop: ~ & -0 |z

21 Flavors L Use arguments: NIR spectrum
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Predicted Cupping Score Spectrum Preview

8137an64 961
Aroma Flavor Aftertaste.  Acidity 08
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7.50 7.50 7.50 8225 =,

- - - T 700 500 1100 1300 1500 1700 1900 2100 2300 2500

Roastlng, origin, Agtron QOrigin Process SR
. 60.7 Others Washed L= rediction
processing

—

Cupping Score

—

Postharvest Quality Evaluation

Coffee Blending Recommendation System

"Coffee Blending" is a technique commonly used in coffee production.

Cost % Quality & Taste
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Postharvest Quality Evaluation

Coffee Blending Recommendation System

Traditional Manual Chemical Analysis ML/DL-Based
Methods Methods Predictive Models
F -y
d’, C
b= 4‘ -r\\.\
= kY
N i o
& -
Scientific Approach
Trial and Error Combining Chemical & Sensory Data
Limited Scope of Analysis _
Sensory Experts Limited Prediction Focus

Challenges in Flavor Analysis

X70% X30%
X 65 % a X35%
== X60% + h _ X40% mmd
! X55% {%MS%
X 50 % 47 X50%

ittt How can we efficiently generate the best combinations
from a vast number of options?

Postharvest Quality Evaluation

Coffee Blending Recommendation System

@&{? Blending Model Establishment:

Sample Sample Sample Blended Sample
m.
A + w + C N\ﬂf ‘ !|ml|llh|:\|.v|\\1>U1|I|T\I|!|I|!H|_
X 60 % o X30% n X10% %‘—i!-m-!-"!-“.l
DivebseOrigins Coffee UsersSifrefarence  Users’ fireférence BalaSeedayd\Coittatning
Specific Flavor
Searching & optimizing algorithm:
D
Ratio _Target .
Coffee A&B& C& (0.40, 0.30, 0.30) Score 1 Recipe
(0.40, 0.40, 0.20) Score 2 {'A':0.50, 'B": 0.25 , ‘C": 0.25}
| B: NIR spectrum | (0.50, 0.30, 0.20) Score 3 {'A': 0.50, ‘C': 0.30,, ‘D": 0.20}
Score 4 | {A:0.60,'8":0.20, 'D:0.20} |

C: NIR spectrum (050, 0.25, 0.25) v o T
= (060,030, 0.10) Score 5 [ ¢a:0.70,'8" 0.10, ‘c:0.20) |
__ NIR spectrum : : [a:0.40,'C: 030, D:0.30} |

Searching Algorithm




Postharvest Quality Evaluation

Coffee Blending Recommendation System

Model : Gate Recurrent Unit (GRU) Model : Transformer

Embedding dimension;
64

Sequence length: 6
Number of layers: 1
Expansion factor: 2
Number of heads: 4

hy Wit Head
Attention

Hidden dimension: 64 Mult-Head

Attention Attntion
Sequence length: 6 = =TT
Number of layers: 3

Nx

Positional Positional

Encoding Encoding
Input Output
Embedding Embedding
*
Inputs Outputs

Postharvest Quality Evaluation

Coffee Blending Recommendation System

v Blending Model Performance

Transformer GRU
Scoring Criterion MAE MSE | MAE MSE
- Frag./Aroma | 0113 0027 | 0123 0.029
Aftertaste Flavor 0118  0.030 | 0.130 0.032
! th !I I | 1 !I I I_|_ Aftertaste | 0122 0032 | 0137 0032
3% Acidity 0.086 0.014 | 0.119  0.022
Body 0.100  0.016 | 0.121  0.029
Mean Absolute Error (MAE)  gajance 0121 0027 | 0157 0038
1w ~ Overall 0.119 0.025 | 0.156 0.035
H;lyi — il Average 0111 0025 | 0.135 0.031

Mean Squared Error (MSE) ~Summary:

1 n The predictive performance of the cupping
- Z(yi — $,)2 report is acceptable, with MAE for each item
L remaining within 0.125.




Postharvest Quality Evaluation

Odor Recognition for Specialty Coffee

®
V Apply gas chromatography-mass spectrometry (GC-MS) and deep

learning techniques to predict odor categories in specialty coffee.

Chemical data

HS-SPME Sampling Q graders
]
1@7 Aroma

w
ﬂ i < Cupping report

Fragrance A’roma @@ i a——— E -
GC-Ms ﬂ ﬁi‘ = : o 1
7|

L G(-J-.Ms-speétr-uni [X]_ )

( Fragrance

Postharvest Quality Evaluation

° Odor Recognition for Specialty Coffee

How does DL model explain its prediction on GC-MS spectra?
GC-MS spectrum (X) Odor category (Y)

T —
T —

o =

Model explanation ﬂ

DL mode] [imm3

Linalool Hexanol

L |

Explanatio{nh?fherry_odzo:rw ) DL model
[ explainer

Pyrazine

Explanation of nutty odor




Postharvest Quality Evaluation
Odor Recognition for Specialty Coffee
DL model explanation (case study)
Coffee origin: Ethiopia, Gedeo, Kochere = ]
Ground 0 0 1 0 0
process: washed truth
DL model 0 0 1 0 1
Agtron: 76.3 } .
Abundance Importance | RT: 172 18 Z I RT:11.8-12.7
le7  11.8-12.7min. 17.2-18.2min. score 1 1 - . £
] 1|
1 1|
1 [
25 081 |
1 1
| [
w0 061 : [
1 L
| 1|
1.5 1 1|
0.4, ) 1
1 / % i =
1.0 o2 | L2 us | {126
0.2: Benzenethiol Hexma] : {-Pinene Pyridine
0.5 i dl . 0 1 xi" | B
B . . } ' . . : 1 L4 . [
5 10 15 20 25 30 35 40 1| e draests |, Y
Retention time (RT) Min. | Garlic, pungent | | Green, fruity |I Fishy
T —
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