Application of Image Texture Feature Distribution on Agriculture Field Type Classification

Chun-Han Lee¹, Kuang-Yu Chen², Li-yu Daisy Liu^{1*}

1 Department of Agronomy, National Taiwan University, Taipei 106, Taiwan

2 Environment and Agriculture Division, GEOSAT Aerospace & Technology Inc., Taiwan

Field Classification

- Direct usage:
 - Real-time reports of landuse and landcover (crop maps)
- Indirect usages:
 - Monitoring crop growth/health in large area
 - Prediction for the yield and harvest time
 - Prescription for precision farming
 - Crop insurance ...

• Highly	Category	Date			
		2019/12	2020/03	2020/06	- Totai
unpalanced data	Rice	30	533	194	757
 Seasonal effects 	Bean	167	214	74	455
• The colors of	Fruit	65	57	72	194
crops are very	Facility	168	93	118	379
similar to each	Maize	1980	423	431	2834
other	Sugarcane	148	41	50	239
othen	Aqua	2512	280	721	3513
	Total	5070	1641	1660	8371

Tricks

- Highly unbalanced data Take subsamples from the same field
- Seasonal effects Use time-dependent labeling scheme.
- The colors of crops are very similar to each other Explore more features that can possibly distinguish the field types.

Prop	ose	d Us	age	of GLCM
(x- Angle , θ (°)	135° (x , 1 , y -1) (x , <i>cos</i> (θ)	$y) \xrightarrow{0^{\circ}} (x+1, y)$ $g_{0^{\circ}} \xrightarrow{45^{\circ}} (x+1, y)$ $-sin(\theta)$	y) -1) Distance, dist	 The flattened version of the GLCM: When presenting a GLCM by its row vectors, G^θ_{dist} = (v₁, v₂,, v_K)^T. Then the K² × 1 GLCMv is defined
0 45 90 135	$\frac{1}{1/\sqrt{2}}$ 0 $-1/\sqrt{2}$	0 $-1/\sqrt{2}$ -1 $-1/\sqrt{2}$	1 $\sqrt{2}$ 1 $\sqrt{2}$	as $(\boldsymbol{v}_1^T, \boldsymbol{v}_2^T, \cdots, \boldsymbol{v}_K^T)^T$.
				16

Catanami	20	19/12	20	20/03	2020/06		
Category	Origin	Resampling	Origin	Resampling	Origin	Resampling	
Rice	30	300	533	1066	194	970	
Bean	167	1002	214	1070	74	740	
Fruit	65	650	57	570	72	720	
Facility	168	1008	93	930	118	944	
Maize	1980	1980	423	846	431	862	
Sugarcane	148	1036	41	410	50	500	
Aqua	2512	2512	280	1120	721	721	

Performance of Field Classification (Label)

Label	Model	Aqua	Bean	Facility	Fruit	Maize	Rice	Sugarcane
	CART	0.86	0.71	0.70	0.66	0.71	0.50	0.50
1	SVM	0.95	0.80	0.88	0.81	0.83	0.71	0.71
	XGBoost	0.96	0.85	0.90	0.87	0.88	0.81	0.83
	CART	0.89	0.74	0.77	0.57	0.76	0.54	0.53
2	SVM	0.95	0.82	0.88	0.82	0.85	0.73	0.76
-	XGBoost	0.97	0.86	0.90	0.89	0.88	0.82	0.84

Conclusion

- Exploiting the repetitive patterns within the field images inspired us to process through resampling to address the unequal number of samples, and facilitating the use of texture feature.
- The temporal disparities in crop types were crucial in influencing classification outcomes from our observations.
- The XGBoost algorithm, rooted in ensemble learning, outperformed CART or SVM in accuracy and computing times.
- The classification model discerned Taiwan's fragmented and diverse agricultural lands.

27

